10.11896/j.issn.1002-137X.2018.01.001
数据科学研究的现状与趋势
大数据时代的到来催生了一门新的学科——数据科学.首先,探讨了数据科学的内涵、发展简史、学科地位及知识体系等基本问题,并提出了专业数据科学与专业中的数据科学之间的区别与联系.其次,分析现阶段数据科学的研究特点,并分别提出了专业数据科学、专业中的数据科学及大数据生态系统中的相对热门话题.接着,探讨了数据科学研究中的10个争议及挑战:思维模式的转变(知识范式还是数据范式)、对数据的认识(主动属性还是被动属性)、对智能的认识(更好的算法还是更多的数据)、主要瓶颈(数据密集型还是计算密集型)、数据准备(数据预处理还是数据加工)、服务质量(精准度还是用户体验)、数据分析(解释性分析还是预测性分析)、算法评价(复杂度还是扩展性)、研究范式(第三范式还是第四范式)、人才培养(数据工程师还是数据科学家).然后,提出了数据科学研究的10个发展趋势:预测模型及相关分析的重视,模型集成及元分析的兴起,数据在先、模式在后或无模式的出现,数据一致性及现实主义的回归,多副本技术及靠近数据原则的广泛应用,多样化技术及一体化应用并存,简单计算及实用主义占据主导地位,数据产品开发及数据科学的嵌入式应用,专家余及公众数据科学的兴起,数据科学家与人才培养的探讨.最后,结合文中工作,对数据科学研究者给出了几点建议和注意事项.
数据科学、大数据、数据产品开发、数据加工、数据驱动
45
TP311(计算技术、计算机技术)
国家自然科学基金项目91646202,71103020;国家社会科学基金15BTQ054,12&ZD220
2018-04-04(万方平台首次上网日期,不代表论文的发表时间)
共13页
1-13