期刊专题

基于Spark的并行DBSCAN算法的设计与实现

引用
随着云应用对运行时间和性能水平要求的逐步提高,以及内存价格的持续走低,基于内存的分布式计算框架Spark获得了前所未有的关注.主要研究DBSCAN算法在Spark上并行化的设计与实现,通过整体分析找到算法并行化可能的性能瓶颈,并从Spark的角度设计了并行DBSCAN算法的DAG图,优化了算法的并行化策略,最大化地降低了shuffle频率和数据量.最后将并行DBSCAN算法与单机DBSCAN算法进行性能对比,并通过实验分析不同参数对聚类结果的影响.结果表明,与单机DBSCAN算法相比,基于Spark的并行DBSCAN算法在聚类精度没有明显损失的情况下,数据量在3百万行时运行效率提高了37.2%,且加速比达到1.6.

Spark、并行DBSCAN算法、DAG、并行化策略

44

TP301.6(计算技术、计算机技术)

北京市自然科学基金2112011;中央高校基本科研业务费基金2050205

2018-01-24(万方平台首次上网日期,不代表论文的发表时间)

共6页

524-529

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

44

2017,44(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn