期刊专题

小样本贝叶斯网络结构学习的KDE-CGA算法

引用
针对小样本数据条件下的贝叶斯网络结构学习,首先利用核密度估计(Kernel Density Estimation,KDE)对小规模样本数据进行拓展,然后引用云遗传算法(Cloud Theory-based Genetic Algotithm,CGA)对贝叶斯网络结构进行学习.通过优化改进核密度函数及其窗宽提高数据拓展效果;通过将云理论引入遗传算法中,自适应地改变交叉率和变异率,避免了算法局部寻优问题.仿真结果验证了该算法的有效性.

小样本、贝叶斯网络、结构学习、核密度估计、云遗传算法

44

TP181(自动化基础理论)

2018-01-24(万方平台首次上网日期,不代表论文的发表时间)

共5页

437-441

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

44

2017,44(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn