期刊专题

基于签名与数据流模式挖掘的Android恶意软件检测系统

引用
随着Android软件开发和维护的不断增多,以及恶意软件的抗检测能力逐渐增强,主流的静态检测方法开始面临一些问题:签名检测虽然检测速度快,但是对代码混淆、重打包类的恶意软件的检测能力不强;基于数据流的检测方法虽然精度高,但检测效率低.针对上述技术存在的缺点,提出了一种混合型静态检测系统.该系统改进了多级签名检测方法,通过对method与class签名进行多级匹配,提高了对代码混淆类恶意软件的检测能力.系统还改进了传统数据流分析技术,通过数据流模式挖掘,找出恶意软件频繁使用的数据流模式,省去了人工确认环节,提高了数据流分析的自动化程度与效率.两种技术的结合使得系统在检测精度与效率两方面达到一个合理的折中点.实验结果表明,该系统对于代码混淆和重打包的恶意软件具有较好的检测能力,对主流恶意软件的检测精确度达到88%.

静态分析、Android恶意软件、签名检测、数据流模式挖掘

44

TP317(计算技术、计算机技术)

国家自然科学基金61373135,61672299;南京邮电大学校级教改基金JG01616JX73

2018-01-24(万方平台首次上网日期,不代表论文的发表时间)

共5页

317-321

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

44

2017,44(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn