基于全景图像CNN的隧道病害自动识别方法
针对目前隧道衬砌病害检测过程中难以快速、方便地获取隧道内壁全景图像以及难以自动检测识别各种病害等问题,提出一种基于全景图像CNN的隧道病害自动识别方法.首先通过一种全景视觉传感器快速获取隧道内壁的全景图像;然后对全景图像进行处理,主要通过全景图像展开、图像预处理、二值化处理等操作来提取疑似病害区域;最后,采用卷积神经网络对病害进行自动检测分类识别.实验结果表明,所提方法极大程度地简化了检测装置在获取隧道内壁全景图像的结构,通过端对端的卷积神经网络实现了各种隧道病害特征的自动提取、检测和识别,并具有88%的检测识别精度,为隧道的维护、竣工验收提供了有效的技术支撑.
隧道、全景图像、病害检测、卷积神经网络
44
TH183
国家自然科学主动三维立体全景视觉传感技术研究61070134
2018-01-24(万方平台首次上网日期,不代表论文的发表时间)
共6页
207-211,250