基于紧集子覆盖的流形学习算法
2000年以后新兴了一系列非线性降维的方法,流形学习中的Isomap就是其中的代表.该算法能够反映数据集的全局结构且简单高效,但是存在低维流形等距的欧氏子集必须是凸集和计算复杂度高等缺点.L-Isomap成功降低了算法的计算复杂度,但是对于地标点(landmark points)的选取大多采用随机的方法,致使该算法不稳定.依据拓扑学和泛函分析中有限维空间有界闭集与紧集(compact set)等价、紧集的任一开覆盖存在有限子覆盖等经典定理,分析数据集所在区域的拓扑结构,确定了一系列能够反映数据结构的地标点.这样的方法计算复杂度低,比L-Iso-map稳定,且将数据集是凸集的要求弱化到紧集(有界闭集),避免了传统Isomap算法放大不完整流形中的“空洞”误差等问题.
流形学习、等距映射、地标点、紧性
44
TP311.12(计算技术、计算机技术)
2017-12-27(万方平台首次上网日期,不代表论文的发表时间)
共4页
88-91