期刊专题

10.11896/j.issn.1002-137X.2017.09.008

一种基于决策粗糙集的模糊C均值聚类数的确定方法

引用
Fuzzy C-Means(FCM)是模糊聚类中聚类效果较好且应用较为广泛的聚类算法,但是其对初始聚类数的敏感性导致如何选择一个较好的C值变得十分重要.因此,确定FCM的聚类数是使用FCM进行聚类分析时的一个至关重要的步骤.通过扩展决策粗糙集模型进行聚类的有效性分析,并进一步确定FCM的聚类数,从而避免了使用FCM时不好的初始化所带来的影响.文中提出了一种基于扩展粗糙集模型的模糊C均值聚类数的确定方法,并通过图像分割实验来验证聚类的效果.实验通过比对不同聚类数下分类结果的代价获得了一个较好的分割结果,并将结果与Z.Yu等人于2015年提出的蚁群模糊C均值混合算法(AFHA)以及提高的AFHA算法(IAFHA)进行对比,结果表明所提方法的聚类结果较好,图像分割效果较明显,Bezdek分割系数比AFHA和IAFHA算法的更高,且在Xie-Beni系数上也有较大优势.

模糊C均值、决策粗糙集、图像分割

44

TP181(自动化基础理论)

国家自然科学基金61672276;江苏省自然科学基金BK20161406

2017-10-20(万方平台首次上网日期,不代表论文的发表时间)

共5页

45-48,66

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

44

2017,44(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn