期刊专题

10.11896/j.issn.1002-137X.2017.06.053

基于图正则化和稀疏约束的增量型非负矩阵分解

引用
非负矩阵分解(Nonnegative Matrix Factorization,NMF)不仅可以很好地描述数据而且分解后的矩阵具有直观的物理意义.为了提高算法的有效性和识别率,提出了一种更为合理的算法——基于图正则化和稀疏约束的增量型非负矩阵分解(Graph Regularized and Incremental Nonnegative Matrix Factorization with Sparseness Constraints,GINMFSC).该算法既保持了数据的几何结构,又充分利用上一步的分解结果进行增量学习,而且对系数矩阵施加了稀疏性约束,最后将它们整合于单个目标函数中,构造了一个有效的更新算法.在多个数据库上的仿真结果表明,相对于NMF,GNMF,INMF,IGNMF等算法,GINMFSC算法在降低运算时间的同时,还具有更好的聚类精度和稀疏性.

非负矩阵分解、图正则、稀疏约束、增量学习

44

TP37(计算技术、计算机技术)

国家自然科学基金61272214,61472059

2017-07-13(万方平台首次上网日期,不代表论文的发表时间)

共8页

298-305

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

44

2017,44(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn