期刊专题

10.11896/j.issn.1002-137X.2017.04.064

基于脉冲耦合神经网络的图像分割

引用
针对传统脉冲耦合神经网络(PCNN)模型在图像分割时需要设置较多参数和不能准确分割低对比度图像的问题,提出一种简化的PCNN模型和改进算法.在简化模型中减少了在传统PCNN模型中需要设置的参数的数量;在改进算法中根据图像像素空间和灰度特征自适应设置模型参数,并根据图像灰度直方图求出灰度期望均值作为图像分割阈值,因此该算法无需选择循环迭代次数,只需一次点火过程就能实现图像的有效分割.实验结果表明,该方法能准确分割图像,纹理细节清晰,分割结果优于人工调整参数的PCNN方法和Otsu方法.

脉冲耦合神经网络、图像分割、参数设置、灰度期望均值

44

TP183(自动化基础理论)

2017-05-16(万方平台首次上网日期,不代表论文的发表时间)

共6页

317-322

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

44

2017,44(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn