期刊专题

基于改进的粗糙集和神经网络的WSN故障诊断

引用
综合粗糙集理论和人工神经网络的优点,提出了改进的粗糙集理论算法,并结合人工神经网络,实现了一种无线传感器网络(Wireless Sensor Network,WSN)节点智能故障诊断方法.首先基于WSN的应用环境和故障特征的分析,通过数据采集、数据预处理和数据压缩来获得诊断决策表,并利用粗糙集中改进的归纳属性约简算法(Improved Inductive Attribute Reduction Algorithm,IIARA)对决策表进行属性约简,从而提取对故障诊断贡献最大的最小故障诊断特征集合,进而确定后端径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)的拓扑结构.最后通过网络训练建立故障征兆与故障类型之间的非线性映射关系,得到诊断结果.仿真实验结果显示,该诊断算法在对WSN节点进行故障诊断时,可以有效地减少网络输入层个数,简化神经网络结构,减少网络的训练时间,提高模型的诊断准确性.

故障诊断、粗糙集、归纳属性约简算法、径向基函数、人工神经网络、无线传感器网络

43

TP277(自动化技术及设备)

2016-12-16(万方平台首次上网日期,不代表论文的发表时间)

共5页

21-25

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

43

2016,43(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn