期刊专题

面向大数据分析的决策树算法

引用
决策树作为机器学习中的一个预测模型,因其输出结果易于理解和解释,而被广泛应用于各个领域,成为了学术界研究的热点.随着数据产生速度的剧增,由于内存容量和处理器速度等限制,常规的决策树算法无法对大数据集进行处理,因此需要对决策树算法的实现进行针对性的处理.首先阐述了决策树的基本算法和优化方法,在此基础上结合大数据带来的挑战,分类比较了各类针对性算法的优缺点,并介绍了支撑这些算法运行的平台.最后讨论了面向大数据的决策树算法的未来发展方向.

决策树、大数据、机器学习

43

TP18(自动化基础理论)

国家自然科学基金61272438,61472253;上海市科委项目14511107702,15411952502

2016-08-30(万方平台首次上网日期,不代表论文的发表时间)

共7页

374-379,383

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

43

2016,43(z1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn