期刊专题

一种半监督SVDD-KFCM算法及其在轴承故障检测中的应用

引用
对机械设备故障诊断过程中故障样本较难提取和运行转速、载荷多变导致诊断方法的适用性不强、准确性不高等问题进行分析,结合支持向量数据描述(Support Vector Data Description,SVDD)算法与模糊核聚类(Kernelbased Fuzzy c-Means,KFCM)算法,提出一种基于半监督学习的SVDD-KFCM(Semi-supervised SVDD-KFCM,SSKFCM)方法用于轴承故障检测.实验表明,在复杂多载荷工况下该算法可有效检测轴承故障,诊断准确率较高.

SVDD、KFCM、故障检测、半监督学习

42

TP206+.3(自动化技术及设备)

2015-09-07(万方平台首次上网日期,不代表论文的发表时间)

共4页

134-137

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

42

2015,42(z1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn