期刊专题

10.11896/j.issn.1002-137X.2015.6.050

基于特征贡献度加权高斯核函数的粗糙one-class支持向量机

引用
粗糙one-class支持向量机(ROCSVM)是一种一类支持向量机,它通过核函数映射,定义上近似超平面和下近似超平面,使得训练样本能根据在粗糙间隔中的位置,自适应地对决策超平面产生影响.由于ROCSVM训练集只有正类样本,因此充分挖掘和利用训练样本的分类特征对于提高ROCSVM的分类性能有重要意义.为此,提出了一种基于训练样本分类特征贡献度的加权高斯核函数(λRBF):先对训练样本做主成分分析(PCA)得到按特征值排序的向量集,以此向量集构造核函数,使得特征值较大的维度在核函数中起较大的作用.在UCI标准数据集和仿真数据上的实验结果表明:与一般RBF的ROCSVM相比,基于λ-RBF的ROCSVM有着更好的泛化性和更高的识别率.

粗糙集、一类支持向量机、加权核函数、主成分分析、超平面、过拟合

42

TP391.4(计算技术、计算机技术)

江苏省产学研项目BY2013015-40

2015-07-06(万方平台首次上网日期,不代表论文的发表时间)

共5页

239-242,246

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

42

2015,42(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn