期刊专题

10.11896/j.issn.1002-137X.2015.4.065

改进型RBF神经网络的多标签算法研究

引用
针对已有的RBF神经网络多标签算法未充分考虑多个样本标签之间的关联性,从而导致泛化性能受到一定影响的问题,研究分析了一种改进型RBF神经网络的多标签算法.该算法首先优化隐含层RBF神经网络基函数中心求取算法——k-均值聚类.采用AP聚类自动寻找k值以获得隐含层节点数目,并构造Huff man树来选取初始聚类中心以防k-均值聚类结果陷入局部最优.然后构造体现标签类之间信息的标签计数向量C,并将其与由优化k-均值聚类得到的聚类中心进行线性叠乘,进而改进RBF神经网络基函数中心,建立RBF神经网络.在公共多标签数据集emotion上的实验表明了该算法能够有效地进行多标签分类.

多标签学习、RBF神经网络、k-均值聚类、AP聚类

42

TP18(自动化基础理论)

国家社会科学基金:大众分类中标签间语义关系挖掘研究12BTQ038

2015-05-18(万方平台首次上网日期,不代表论文的发表时间)

共5页

316-320

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

42

2015,42(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn