期刊专题

10.11896/j.issn.1002-137X.2015.1.053

基于Bagging-SVM集成分类器的网页作弊检测

引用
网页作弊不仅造成信息检索质量下降,而且给互联网的安全也带来了极大的挑战.提出了一种基于Bag-ging-SVM集成分类器的网页作弊检测方法.在预处理阶段,首先采用K-means方法解决数据集的不平衡问题,然后采用CFS特征选择方法筛选出最优特征子集,最后对特征子集进行信息熵离散化处理.在分类器训练阶段,通过Bagging方法构建多个训练集并分别对每个训练集进行SVM学习来产生弱分类器.在检测阶段,通过多个弱分类器投票决定测试样本所属类别.在数据集WEBSPAM-UK2006上的实验结果表明,在使用特征数量较少的情况下,本检测方法可以获得非常好的检测效果.

网页作弊、集成分类器、特征选择、信息熵、弱分类器

42

TP181(自动化基础理论)

四川省学术和技术带头人后备人选培养基金X800912371309

2015-02-06(万方平台首次上网日期,不代表论文的发表时间)

共5页

239-243

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

42

2015,42(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn