期刊专题

采用改进高斯核的MLS-SVM人脸表情识别算法

引用
针对用于支持向量机的低维输入数据空间向高维特征空间的映射,通过黎曼测度张量扩大了支持向量机的线性可分边界,进一步提高了支持向量机分类的准确性.考虑到MLS-SVM的多分辨逼近效果和改进高斯核函数对支持向量机分类准确度的提升,企图努力给出一种基于两者优点的人脸表情识别算法,以反映人类在自然界中的认知过程,提出了采用改进高斯核的MLS-SVM人脸表情识别算法.实验结果表明,其人脸表情识别性能通过修改高斯核函数获得了较大的提升.

支持向量机、人脸表情识别、高斯核、最小二乘算法

41

TP391.4(计算技术、计算机技术)

国家青年科学基金项目61309033

2014-08-26(万方平台首次上网日期,不代表论文的发表时间)

共4页

132-134,142

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

41

2014,41(z1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn