期刊专题

10.3969/j.issn.1002-137X.2013.10.053

基于信息增益特征关联树的文本特征选择算法

引用
传统的信息增益算法在类和特征项分布不均时,分类性能明显下降.针对此不足,提出了一种基于信息增益特征关联树的文本特征选择算法(UDsIG).首先,对数据集按类进行特征选择,降低类分布不均时对特征选择的影响.其次,利用特征分布均匀度改善特征项在类内分布不均对特征选择的干扰,并采用特征关联树模型对类内特征进行处理,保留强相关特征,删除弱相关和不相关特征,降低特征冗余度.最后,使用类间加权离散度的信息增益公式进一步计算,得到更优特征子集.通过对比实验表明,选取的特征具有更好的分类性能.

特征选择、特征关联树、信息增益值、不平衡数据集、离散度

40

TP301.6(计算技术、计算机技术)

辽宁省计划项目2012232001;辽宁省自然科学基金201202119

2013-11-08(万方平台首次上网日期,不代表论文的发表时间)

共5页

252-256

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

40

2013,40(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn