期刊专题

10.3969/j.issn.1002-137X.2012.z3.043

一种增量式类内局部保持降维算法

引用
针对在线学习中的算法效率问题,提出了一种增量式类内局部保持降维算法.该算法综合考虑了基于QR分解的降维算法与保类内Fisher判别分析法的优点,根据训练过程中新增的样本进行投影矩阵在线更新,克服了传统的批量式训练方法在线学习时计算量过分冗余的缺陷.同时,通过兼顾输入样本的局部结构和全局分布状态,使得该算法能够有效地应用于多簇、重叠的数据形态.在ORL人脸库和COIL20图像库上的实验表明,该增量式算法不仅在降维效果上基本与批量式算法保持一致,而且具有较大的效率优势.

在线学习、局部保持、特征降维

39

TP3;TM7

国家自然科学基金项目61070043

2013-01-28(万方平台首次上网日期,不代表论文的发表时间)

共5页

154-158

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

39

2012,39(z3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn