10.3969/j.issn.1002-137X.2010.07.010
一种基于聚集系数的局部社团划分算法
社团划分算法是复杂网络研究中的一个热点问题.传统的复杂网络社团划分算法都必须获得全局网络的信息.随着网络规模不断增大,获得全局信息的难度随之增加;而在很多情况下只关心网络中某节点所在的局部社团.为了准确、快速地找到大规模复杂网络中的局部社团,提出了一种基于节点聚集系数性质的局部社团划分算法.该算法根据节点的连接频度,利用节点聚集系数的性质,从网络中某一待求节点开始,通过搜索邻居节点,划分该节点的社团结构.该算法只需要了解与待求节点相关的局部网络信息,在解决局部社团划分问题时其时间复杂度比传统的社团划分算法低.同时,该算法也可以应用于复杂网络全局社团结构的划分.利用该算法分别对Zachary空手道俱乐部网络和由Java开发工具包构成的软件网络图进行社团划分实验,并且分别对实验结果与对象网络的具体特征进行了对比分析.
局部社团、聚集系数、社团划分
37
TP1;TE1
863国家高技术研究发展计划2006AA01Z177;国家自然科学基金60873027
2010-09-19(万方平台首次上网日期,不代表论文的发表时间)
共5页
46-49,53