期刊专题

10.3969/j.issn.1002-137X.2010.06.053

一种改进的协同过滤推荐算法

引用
传统的协同过滤算法在寻找最近邻居集合时没有考虑时间因素的影响,仅从用户或者项目单方面出发计算用户或者项目的相似性以产生推荐结果,也忽略了用户特征对推荐的影响.针对上述问题,引入时间遗忘函数、黏度函数、用户特征向量,对协同过滤算法寻找用户的最近邻居集合过程进行了改进,体现了时间效应、用户偏好程度和用户特征.采用MovieLens数据集进行了一系列对比实验,结果表明,改进后的算法能够明显提高推荐的准确度.

协同过滤、时间效应、用户偏好度、用户特征向量

37

TP3;G25

重庆市自然基金项目CSTC2009BB2046

2010-08-31(万方平台首次上网日期,不代表论文的发表时间)

共4页

226-228,243

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

37

2010,37(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn