期刊专题

10.3969/j.issn.1002-137X.2009.11.051

面向超大数据集的SVM近似训练算法

引用
标准SVM学习算法运行所需的时间和空间复杂度分别为O(l~3)和O(l~2),l为训练样本的数量,因此不适用于对超大数据集进行训练.提出一种基于近似解的SVM训练算法:Approximate Vector Machine(AVM).AVM采用增量学习的策略来寻找近似最优分类超平面,并且在迭代过程中采用热启动及抽样技巧来加快训练速度.理论分析表明,该算法的计算复杂度与训练样本的数量无关,因此具有良好的时间与空间扩展性.在超大数据集上的实验结果表明,该算法在极大提高训练速度的同时,仍然保持了原始分类器的泛化性能,并且训练完毕具有较少的支持向量,因此结果分类器具有更快的分类速度.

支持向量机、核函数、增量学习、近似解、核心集

36

TP181(自动化基础理论)

国家自然科学基金60773177;福建省青年人才项目2008F3108;厦门理丁学院引进人才项目YKJ08003R

2010-01-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

208-212

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

36

2009,36(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn