期刊专题

10.3969/j.issn.1002-137X.2009.11.048

基于优化的文档频和Beam搜索的特征选择方法

引用
在文本分类中,特征空间的维数通常高达几万,甚至远远超出训练样本的个数,这是一种十分普遍现象.为了提高文本挖掘算法的运行速度,降低占用的内存空间,过滤掉不相关或相关程度低的特征,必须使用特征选择算法.首先给出了一个基于最小词频的文档频方法,然后把粗糙集引入进来并提出了一个基于Beam搜索的属性约简算法,最后把该属性约简算法同基于最小词频的文档频方法结合起来,提出了一个综合的特征选择算法.该算法首先利用基于最小词频的文档频方法进行特征选择,然后利用所提属性约简算法消除冗余,从而获得较具代表性的特征子集.实验结果表明该算法是有效的.

词频、文档频、粗糙集、Beam搜索、属性约简

36

TP301(计算技术、计算机技术)

四川省科技计划项目2008GZ0003;四川省科技厅科技攻关项目07GG006-014

2010-01-22(万方平台首次上网日期,不代表论文的发表时间)

共4页

196-199

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

36

2009,36(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn