期刊专题

10.3969/j.issn.1002-137X.2009.09.013

基于谱聚类的复杂网络社团发现算法

引用
复杂网络社团发现的研究对于控制疾病传播、网络病毒的传播等具有重大意义.针对已有社团发现算法时间复杂度过高,不适用于结构未知的大型网络等问题,结合谱聚类在识别未知分布数据集聚类方面的优势,以及模块度函数能够在大型网络中搜寻出最佳社团数目的能力,提出了基于谱聚类的社团发现算法--SCCF算法.实验结果表明,与已有的社团发现算法相比,SCCF算法效率更高,并且能够在网络节点数上万的大型网络中得到高质量的社团结构.

复杂网络、社团结构、谱聚类、模块度

36

TP3;G4

国家863计划项目2005AA147030

2009-11-10(万方平台首次上网日期,不代表论文的发表时间)

共3页

49-50,95

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

36

2009,36(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn