10.3969/j.issn.1002-137X.2009.04.006
流形学习方法中的若干问题分析
流形学习是近年来机器学习与认知科学中的一个新的研究热点,其本质在于根据有限的离散样本学习和发现嵌入在高维空间中的低维光滑流形,从而揭示隐藏在高维数据中的内在低维结构,以实现非线性降维或者可视化.介绍了几种主要的流形学习算法,分析了它们的优势与不足,总结了流形学习方法中需要解决的若干问题及其研究现状,并展望了流形学习未来的研究前景.
流形学习、维数约简、等距映射算法、局部线性嵌入算法
36
TP3;O23
国家863计划项目2007AA01Z165;国家自然科学基金70471003,60773133;高等学校博士学科点专项科研基金20050108604;教育部科学技术研究重点项目206017;山西省重点实验室开放基金200603023
2009-05-22(万方平台首次上网日期,不代表论文的发表时间)
共5页
25-28,59