期刊专题

10.3969/j.issn.1002-137X.2009.03.059

基于聚类分析和集成神经网络的序列图像多目标识别算法

引用
针对现有的集成神经网络的训练子集选择时没有考虑样本空间的分布情况,使得构造的训练子集具有很大的随机性和主观性,集成的差异性不能有效保证的缺点,提出了一种新的基于Hu七阶矩、RPCL聚类分析和集成神经网络的序列图像多目标识别算法.该方法首先在训练视频中连续提取序列图像中的目标--人、人群、汽车,利用Hu七阶矩提取轮廓信息.为了防止Hu七阶矩对小目标和非刚体目标的描述能力弱的缺点,再提取图像的面积信息.其次对所提取的8维数据采用基于对手惩罚策略的竞争学习算法(RPCL)进行聚类分析,得到待分样本的分布.再次采用提出的单个神经网络生成算法得到单个神经网络.最后采用相对多数方法对神经网络进行集成.采用基于boosting,bagging方法的集成神经网络和该算法进行比较,结果表明该方法的分类精度要高于传统方法,是一种有效的目标识别算法.

聚类分析、Hu矩、集成神经网络、序列图像、多目标识别

36

TP3;TN9

国家自然科学基金60472072;航天科技创新基金06CASC0404;陕西省教育厅科研项目08JK241

2009-04-30(万方平台首次上网日期,不代表论文的发表时间)

共5页

215-219

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

36

2009,36(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn