期刊专题

10.3969/j.issn.1002-137X.2008.06.053

基于多特征融合和Boosting RBF神经网络的人脸识别

引用
提出一种多特征信息融合的人脸识别方法.应用Zernike矩方法和非负矩阵分解法(NMF)分别提取具有旋转不变性的人脸几何特征和人脸子空间投影系数特征,将这两种具有一定互补性的特征串行融合,得到一个分类能力更强的特征.在此基础上,采用RBF神经网络进行人脸识别.为了提高神经网络的分类准确率和泛化能力,采用Boosting方法进行网络集成.实验结果表明,提出的算法利用较少样本数据即可快速地进行人脸识别.

人脸识别、Zernike矩、非负矩阵分解法、Boosting方法、RBF神经网络

35

TP3;TN9

2008-08-19(万方平台首次上网日期,不代表论文的发表时间)

共3页

196-198

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

35

2008,35(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn