期刊专题

10.3969/j.issn.1002-137X.2008.06.047

超球体单类支持向量机的SMO训练算法

引用
由于One-class支持向量机能用于无监督学习,被广泛用于信息安全、图像识别等领域中.而超球体One class支持向量机能生成一个合适的球体,将训练样本包含其中,故更适合于呈球形分布的样本学习.但由于超球体One-class支持向量机没有一种快速训练算法,使其在应用中受到限制.SMO算法成功地训练了标准SVM,其训练思想也可用于超球体One-class支持向量机的训练.本文提出了超球体One-class支持向量机的SMO训练算法,并对其空间和时间复杂度进行了分析.实验表明,这种算法能迅速、有效地训练超球体One-class支持向量机.

无监督学习、超球体One-class支持向量机、SMO训练算法

35

TP3;TP1

2008-08-19(万方平台首次上网日期,不代表论文的发表时间)

共3页

178-180

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

35

2008,35(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn