10.3969/j.issn.1002-137X.2008.06.039
基于语义的关键词提取算法
关键词1提供了文档内容的概要信息,它们被使用在很多数据挖掘的应用中,在目前的关键词提取算法中,我们发现词汇层面(代表意思的词)和概念层面(意思本身)的差别导致了关键字提取的不准确,比如不同语法的词可能有着相同的意思,而相同语法的词在不同的上下文有着不同的意思.为了解决这个问题,这篇文章提出使用词义代替词并且通过考虑关键候选词的语义信息来提高关键词提取算法性能的方法.与现有的关键词提取方法不同,该方法首先通过使用消歧算法,通过上下文得到候选词的词义;然后在后面的词合并、特征提取和评估的步骤中,候选词义之间的语义相关度被用来提高算法的性能.在评估算法时,我们采用一种更为有效的基于语义的评估方法与著名的Kea系统作比较.在不同领域间的实验中可以发现,当考虑语义信息后,关键词提取算法的性能能够得到很大的提高.在同领域的实验中,我们的算法的性能与Kea++算法的相近.我们的算法没有领域的限制性,因此具有更好的应用前景.
关键词提取、语义相关度、消歧
35
TP3;TN9
国家自然科学基金资助项目60675015
2008-08-19(万方平台首次上网日期,不代表论文的发表时间)
共4页
148-151