期刊专题

10.3969/j.issn.1002-137X.2008.06.039

基于语义的关键词提取算法

引用
关键词1提供了文档内容的概要信息,它们被使用在很多数据挖掘的应用中,在目前的关键词提取算法中,我们发现词汇层面(代表意思的词)和概念层面(意思本身)的差别导致了关键字提取的不准确,比如不同语法的词可能有着相同的意思,而相同语法的词在不同的上下文有着不同的意思.为了解决这个问题,这篇文章提出使用词义代替词并且通过考虑关键候选词的语义信息来提高关键词提取算法性能的方法.与现有的关键词提取方法不同,该方法首先通过使用消歧算法,通过上下文得到候选词的词义;然后在后面的词合并、特征提取和评估的步骤中,候选词义之间的语义相关度被用来提高算法的性能.在评估算法时,我们采用一种更为有效的基于语义的评估方法与著名的Kea系统作比较.在不同领域间的实验中可以发现,当考虑语义信息后,关键词提取算法的性能能够得到很大的提高.在同领域的实验中,我们的算法的性能与Kea++算法的相近.我们的算法没有领域的限制性,因此具有更好的应用前景.

关键词提取、语义相关度、消歧

35

TP3;TN9

国家自然科学基金资助项目60675015

2008-08-19(万方平台首次上网日期,不代表论文的发表时间)

共4页

148-151

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

35

2008,35(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn