期刊专题

10.3969/j.issn.1002-137X.2008.04.061

一种基于向量夹角的k近邻多标记文本分类算法

引用
在多标记学习中,一个示例可以有多个概念标记.学习系统的目标是通过对由多标记样本组成的训练集进行学习,以尽可能正确地预测未知样本所对应的概念标记集.k近邻算法已被应用到多标记学习中,该算法将测试示例转化为多维向量,根据其k个近邻样本的标记向量来确定该测试示例的标记向量.传统的k近邻算法是基于向量的空间距离来选取近邻,而在自然语言处理中,文本间的相似度常用文本向量的夹角来表示,所以本文将文本向量间的夹角关系作为选取k近邻的标准并结合k近邻算法提出了一种多标记文本学习算法.实验表明,该算法在文档分类的准确率上体现出较好的性能.

机器学习、多标记学习、文本分类

35

TP3(计算技术、计算机技术)

2008-06-23(万方平台首次上网日期,不代表论文的发表时间)

共3页

205-206,封3

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

35

2008,35(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn