期刊专题

10.3969/j.issn.1002-137X.2008.04.010

基于分箱统计的FCM算法及其在网络入侵检测中的应用

引用
使用KDDCup99网络入侵检测数据,对传统的FCM(Fuzzy C-Means)算法进行实验,发现该聚类算法在进行聚类划分和孤立点判断时,存在划分粗略性现象.针对该问题,本文提出使用分箱统计的FCM方法来划分和描述数据集的分布.与原有算法相比,不需要频繁更新聚类中心,同时耗时问题也得到较好的改善.文章最后将特征匹配与基于分箱的FCM算法相结合,协同分析网络连接数据记录.实验结果证明,这种协同检测方法的检测率有明显提高,实时性好,能较好地发现新的攻击类型,便于检测知识库的更新.

FCM算法、分箱统计、特征匹配、协同检测

35

TP3(计算技术、计算机技术)

江苏省产业技术研究与开发基金苏发改高技发[2006]1106号

2008-06-23(万方平台首次上网日期,不代表论文的发表时间)

共4页

36-39

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

35

2008,35(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn