期刊专题

10.3969/j.issn.1002-137X.2007.05.050

基于PSO面向K近邻分类的特征权重学习算法

引用
特征权重学习是基于特征赋权的K近邻算法需要解决的重要问题之一,传统上提出了许多启发式的学习方法.近年来,随着进化计算技术在模式识别及数据挖掘领域的广泛应用,基于进化计算的权重学习和距离学习方法也得到越来越多的重视.本研究针对基于特征赋权的K近邻算法的权重学习问题,提出了一种基于PSO进行权重学习的算法PSOKNN,通过与传统KNN、GAKNN及ReliefKNN的实验比较分析表明,该方法可有效地搜索出合适的特征权重,获得较好的分类精度并淘汰冗余或无关的特征.

特征赋权、K近邻分类、粒子群算法

34

TP3(计算技术、计算机技术)

国家自然科学基金60573097;广东省自然科学基金04300462;05200302

2007-07-02(万方平台首次上网日期,不代表论文的发表时间)

共3页

187-189

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

34

2007,34(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn