10.3969/j.issn.1002-137X.2006.08.053
基于相反分类器的数据流分类方法
目前挖掘概念流动的数据流已经成为研究的热点.概念流动的数据流分类在预防信用卡欺诈,网络入侵发现等应用中具有重要的应用.本文定义了一种相反分类器来从错误中学习,提出了训练一个集合分类器来对具有概念流动的数据流进行分类的算法IWB.通过在合成数据集和benchmark上的实验,与Weighted Baggging算法[13]比较,表明我们的算法具有更高的准确度,更快地收敛到新的目标概念的性能.
集合分类器、相反分类器、概念流动
33
TP3(计算技术、计算机技术)
2006-09-20(万方平台首次上网日期,不代表论文的发表时间)
共4页
206-209