期刊专题

10.3969/j.issn.1002-137X.2006.04.045

一种可并行的贝叶斯集合在线学习算法

引用
无论是Boosting还是Bagging算法,在使用连续样本集进行分类器集合学习时,均需缓存大量数据,这对大容量样本集的应用不可行.本文提出一种基于贝叶斯集合的在线学习算法BEPOL,在保持Boosting算法加权采样思想的前提下,只需对样本集进行一次扫描,就可实现对贝叶斯集合的在线更新学习.算法针对串行训练时间长、成员相关性差的缺点,采用了并行学习的思想,通过将各贝叶斯分量映射到并行计算结构上,提高集合学习的效率.通过UCI数据集的实验表明,算法BEPOL具有与批量学习算法相近的分类性能和更小的时间开销,这使得算法对某些具有时间和空间限制的应用,如大型数据集或连续型数据集应用尤其有效.

贝叶斯分类器、集合、在线学习

33

TP3(计算技术、计算机技术)

同济大学校科研和教改项目2005BB2224

2006-06-08(万方平台首次上网日期,不代表论文的发表时间)

共3页

159-161

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

33

2006,33(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn