期刊专题

基于用户兴趣子类的协作推荐算法

引用
随着电子商务规模的进一步扩大,用户数目和文档资源急剧增加,导致用户数据的极端稀疏性.传统协作推荐算法都无法很好地解决数据稀疏性问题.本文提出一种基于兴趣子类的协作推荐算法,通过子类处理思想的引入,使得某两个用户即使整体不相似而因为”局部点”的相似产生有用的推荐,”最近邻居”的发现变得更容易更准确.实验结果表明,该算法能有效地解决用户数据的极端稀疏问题,在同等条件下,相对于传统协作推荐算法”9”有更好的推荐质量.

兴趣子类、兴趣分类树、协作推荐、数据稀疏性、平均绝对误差

32

TP3(计算技术、计算机技术)

重庆大学校科研和教改项目2003A33

2005-11-17(万方平台首次上网日期,不代表论文的发表时间)

共5页

176-180

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

32

2005,32(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn