期刊专题

10.3969/j.issn.1002-137X.2005.03.061

用HCM聚类和遗传算法实现多级模糊神经网络

引用
模糊集理论适用于一些实验数据中不确定性和模糊性的建模问题,而模糊推理系统拥有模糊IF-THEN格式的结构化知识表示,但缺少适应性.神经网络本身具有对外部很强的适应性和从过去数据中学习的机制,但基于线性推理的模糊神经网络(FNN)模型作为模糊推理方法不能得到存在于参数间的最终关系,也不能影响接着发生的模糊集合.因此,我们提出了一个多级模糊神经网络(Multi-FNN),使用硬C均值聚类和进化模糊颗粒,利用处理为近似推理的一个线性推理,获得信息微粒和模糊集之间的关系.

多级模糊神经网络、模糊规则、HCM聚类、遗传算法

32

TP3;O23

2005-04-21(万方平台首次上网日期,不代表论文的发表时间)

共4页

229-232

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

32

2005,32(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn