期刊专题

10.13196/j.cims.2021.06.013

面向智能制造的不规则零件排样优化算法

引用
以智能工厂应用场景为例,为提高广泛应用于智能制造领域的二维不规则件的排样性能,提出了基于启发式和蚁群的不规则件排样优化算法.首先提取不规则件的几何特征,对零件进行组合操作预处理,使两个或多个不规则零件组合为矩形件或近似矩形件并对其包络矩形,然后利用蚁群学习算法对预处理后的零件进行排样,确定零件排放的最佳位置,不断更新得到最优排样结果.仿真实验结果表明,综合考虑板材利用率以及耗时情况,所提算法取得了较好的结果,能够满足实际生产的需求.

二维板材、不规则零件、启发式算法、蚁群学习算法、优化排样

27

TP391(计算技术、计算机技术)

2021-07-06(万方平台首次上网日期,不代表论文的发表时间)

共8页

1673-1680

暂无封面信息
查看本期封面目录

计算机集成制造系统

1006-5911

11-5946/TP

27

2021,27(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn