期刊专题

10.13196/j.cims.2018.04.002

自适应NWFE-KFCM算法在旋转机械故障辨识中的应用

引用
为提高故障辨识准确率,提出一种专用于故障数据集自适应确定聚类类别数目的非参数加权特征提取(NWFE)和模糊核C-均值(KFCM)相结合的算法.以一个双跨度转子实验台作为实验研究对象,在将核函数与模糊C-均值方法相结合的基础上,采用NWFE算法中加权聚类中心的计算实现了为每个样本分配不同的权值,并引入聚类评价指标PBMF自适应地确定出最佳聚类数目.用Iris经典数据集对算法进行验证表明,所提算法能够克服传统算法中存在的同等对待不同样本特征和完全靠先验知识确定聚类数目的弊端.将该算法应用到转子实验台模拟故障的特征数据集中,进一步表明了其在转子故障数据集聚类分析中的有效性和实用性.

非参数特征加权、模糊核聚类、自适应聚类数、旋转机械、故障诊断

24

TP18;TH16(自动化基础理论)

国家自然科学基金资助项目51675253. Project supported by the National Natural Science Foundation,China51675253

2018-06-15(万方平台首次上网日期,不代表论文的发表时间)

共9页

820-828

相关文献
评论
暂无封面信息
查看本期封面目录

计算机集成制造系统

1006-5911

11-5946/TP

24

2018,24(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn