期刊专题

10.3778/j.issn.1002-8331.2207-0410

基于多尺度注意力特征融合的场景文本检测

引用
针对目前文本检测中小尺度文本和长文本检测精度低的问题,提出了一种基于多尺度注意力特征融合的场景文本检测算法.该方法以Mask R-CNN为基线模型,引入Swin_Transformer作为骨干网络提取底层特征.在特征金字塔(feature pyramid networks,FPN)中,通过将多尺度注意力热图与底层特征通过横向连接相融合,使检测器的不同层级专注于特定尺度的目标,并利用相邻层注意力热图之间的关系实现了FPN结构中的纵向特征共享,避免了不同层之间梯度计算的不一致性问题.实验结果表明:在ICDAR2015数据集上,该方法的准确率、召回率和F值分别达到了88.3%、83.07%和85.61%,在CTW1500和Total-Text弯曲文本数据集上相较现有方法均有良好表现.

场景文本检测、Mask R-CNN、Swin Transformer、注意力机制、多尺度特征融合

60

TP391(计算技术、计算机技术)

陕西省自然科学基础研究;陕西省科技计划;陕西省教育厅项目

2024-01-18(万方平台首次上网日期,不代表论文的发表时间)

共9页

198-206

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

60

2024,60(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn