期刊专题

10.3778/j.issn.1002-8331.2211-0298

改进轻量化的CenterNet的小目标检测

引用
小目标检测一直是目标检测中的难点,其特点为感受视野小,无法获取足够的语义特征,相比传统目标检测算法在工业应用中难以实现轻量化.为提升小目标检测精度、计算速度以及减少计算量和成本开销,提出一种基于CenterNet的轻量化的检测器SFPN-CenterNet.采用轻量级的深度可分离卷积网络来替代原始的普通卷积;简化FPN网络,减少下采样层数对特征进行提取融合,舍弃对于小目标检测无显著作用的高层特征;改进损失函数,对原来的公式以及超参数进行优化.在自制的数据集上进行对比实验.结果表明:利用深度可分离卷积作为提取特征的卷积块,可以使网络参数量减少到原来的1/480;改进损失函数降低了小目标的误检率和漏检率.相对于原始算法,改进算法的AP提升了3.5个百分点,检测速度提高了2.74 ms.

CenterNet、小目标检测、深度可分离、轻量化

59

TP391.4(计算技术、计算机技术)

辽宁省教育厅基础研究项目LN2020JCL029

2023-09-18(万方平台首次上网日期,不代表论文的发表时间)

共7页

205-211

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

59

2023,59(17)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn