期刊专题

10.3778/j.issn.1002-8331.2204-0330

融合改进GAN网络的夜视环境车道线检测

引用
基于深度学习的车道线检测方法有效地促进了自动驾驶技术的发展,然而这些方法在处理夜视场景下车道线检测问题仍然存在一定的不足.针对夜视场景下车道线检测存在的检测精度弱问题,将基于注意力机制的生成对抗网络(attentive GAN)和空间卷积神经网络(spatial convolutional neural network,SCNN)算法相结合,提出一种针对夜视场景的车道线检测方法.该方法利用Attentive GAN网络提高夜间道路图像质量,突出道路图像中的车道线特征,再利用ResNet-18网络提取车道线特征,随后利用SCNN网络进行图像信息的逐行逐列传递,并利用三次样条曲线进行概率图拟合,得到最终的车道线检测结果.在利用模拟后的TuSimple数据集验证了方法的检测性能,实验结果表明,提出的车道线检测方法在夜视场景下具有良好的车道线检测性能.

夜间车道线检测、注意力机制的生成对抗网络(Attentive GAN)、ResNet-18网络、空间卷积神经网络(SCNN)

59

TP391(计算技术、计算机技术)

国家自然科学基金;河南省科技攻关项目;河南省科技攻关项目;河南省科技攻关项目

2023-08-28(万方平台首次上网日期,不代表论文的发表时间)

共9页

214-222

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

59

2023,59(15)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn