期刊专题

10.3778/j.issn.1002-8331.2204-0105

面向智能驾驶的行人多目标跟踪算法研究

引用
多目标跟踪(multi-object tracking,MOT)是智能驾驶场景中的一个研究热点,大多数现代MOT网络遵循"逐检测跟踪"范式,跟踪目标的轨迹关联是其中一个急需解决的热点问题.针对场景混乱以及意外的遮挡造成的对象重叠往往会导致遗漏检测,进而增加了数据关联的难度等问题,提出融合注意力机制和无锚框检测的智能驾驶多目标跟踪算法PDTNet.将金字塔分割注意力模块融入深层聚合网络,提高多尺度特征的表示能力;设计一个简单Re-identification模块,将由无锚框检测器获得的目标检测与已有的跟踪轨迹相结合进行多步匹配,实现强鲁棒性的多目标跟踪.实验结果表明,在MOT16、MOT17数据集和BUUISE数据集上验证了算法的有效性,提高了多目标跟踪的检测准确率、关联准确率以及跟踪总精度等,在智能驾驶多目标跟踪场景中有很大应用.

多目标跟踪、智能驾驶、注意力机制、深层聚合网络

59

TP391.41(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;北京市科技重点项目;北京联合大学学术研究项目;北京联合大学学术研究项目;北京联合大学学术研究项目;北京联合大学学术研究项目

2023-08-28(万方平台首次上网日期,不代表论文的发表时间)

共8页

206-213

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

59

2023,59(15)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn