期刊专题

10.3778/j.issn.1002-8331.2303-0154

复杂背景下的无人机图像小目标检测

引用
针对无人机航拍图像背景复杂、目标特征小而导致检测精度低的问题,提出了一种基于YOLOv7-w6改进的小目标检测算法EMT-ECoTNet.采用具有全局建模优势的CoT模块和增加最大池化层MaxPool用以挖掘小目标更多纹理信息的MA-ECA通道注意力模块构建的ECoT Block,有利于小目标特征提取;通过具有大感受野的空间金字塔池化结构M-SPPFCSPC对小目标特征进一步增强;使用EIoU损失函数分别对预测框和真实框之间宽和高的预测结果进行惩罚来提高收敛速度和准确率.实验结果表明,EMT-ECoTNet在VisDrone数据集上mAP50达到62.8%,较原始基线模型YOLOv7-w6提高了3.2个百分点,比主流算法在无人机小目标检测任务上具有更好的检测性能.

无人机图像、复杂背景、小目标检测、注意力机制、空间金字塔池化

59

TP391.41(计算技术、计算机技术)

国家新闻出版署智能与绿色柔版印刷重点实验室招标课题资助项目ZBKT202108

2023-08-28(万方平台首次上网日期,不代表论文的发表时间)

共8页

107-114

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

59

2023,59(15)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn