期刊专题

10.3778/j.issn.1002-8331.2203-0357

识别安全帽佩戴的轻量化网络模型

引用
安全帽佩戴识别是一种分类少的目标检测任务,使用现有精度较高的大型深度学习网络模型来识别安全帽佩戴,存在参数冗余问题且计算较大,不利于部署在计算量有限的嵌入式设备中以适应实际的工地环境.针对以上问题,提出了一种适合部署在嵌入式设备中的轻量化网络模型YOLO-Ghost-BiFPNs3.在YOLOv4的基础上,基于Ghost模块重构新的网络结构并对网络的深度和宽度进行裁剪;设计一种基于通道加权相加的轻量化模块BiFPNs3来替换原来计算量较大的FPN+PAN的结构;采用更容易量化的H-Swish激活函数;在Safety-Helmet-Wearing-Dataset数据集上进行实验,在测试集上,mAP@0.5为91.1%,相较于YOLOv4精度仅损失1个百分点,比轻量化网络模型YOLOv4-Tiny精度高26个百分点.参数量为原来YOLOv4的3%,计算量仅为原来YOLOv4的5.8%.

目标检测、轻量化网络模型、安全帽佩戴识别、Ghost模块

59

TP391.4(计算技术、计算机技术)

四川省重点研发项目21ZDYF1254

2023-07-18(万方平台首次上网日期,不代表论文的发表时间)

共7页

149-155

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

59

2023,59(13)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn