期刊专题

10.3778/j.issn.1002-8331.2203-0498

基于多粒度信息融合的无监督行人重识别方法

引用
现有的无监督行人重识别算法通过残差网络仅能提取粗略的全局特征,但是随着数据集中行人、姿态数目和背景复杂性的激增,这些特征表明行人不同姿态的能力不足,使得模型出现欠拟合,进而导致识别精度下降.基于对上述问题的分析,从空间域和通道域两方面考虑,设计了一种全新的多粒度信息融合的残差块(multi-granularity information fusion residual block,MgIFR block),替换残差网络中常规的残差模块,并以此提出了一种基于多粒度信息融合的无监督行人重识别方法.MgIFR模块在空间域上借鉴自注意力机制的思想,通过卷积提取粗粒度的全局特征;结合这些全局特征和图像中特定像素处编码的query,得到具有像素级上下文信息的细粒度全局特征,将具有粗粒度和细粒度的两种全局特征相结合,得到行人姿态的显著性特征;在通道域上,利用通道注意力机制,对输入的残差特征和跨层特征进行通道加权融合,最终得到具有多粒度信息融合的特征,以此来提高模型应对不同行人姿态的能力.实验结果表明,在现有公开数据集中,特别是行人数目姿态多和背景更加复杂的数据集上,相较于基线模型,Rank-1最高提升了9个百分点,mAP最高提升了10.7个百分点.提出的MgIFR模块具有更好的行人姿态的区分能力,有效解决了行人的不同姿态导致误判的问题,提高了行人重识别的准确率.

行人重识别、多粒度、残差块、自注意力机制、上下文信息、特征融合、无监督方法

59

TP391(计算技术、计算机技术)

国家自然科学基金61703252

2023-07-18(万方平台首次上网日期,不代表论文的发表时间)

共11页

99-109

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

59

2023,59(13)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn