10.3778/j.issn.1002-8331.2211-0359
改进YOLOv5的交通标志检测算法
交通标志检测在自动驾驶、辅助驾驶等智能交通系统已得到广泛应用,其检测性能关乎到行车安全.针对现有目标检测算法对图像中尺寸小、分辨率低和特征不明显的交通标志检测效果较差的问题,提出了一种基于改进YOLOv5s的交通标志检测算法.将原算法中80×80小感受野目标检测层改为感受野更小的160×160检测层,提高网络模型对交通标志小目标的检测能力,降低小目标的漏检率;构建了注意力上下文模块(attention context module,ACM),对各分支获取不同的感受野,得到目标及其相邻区域的特征信息,并且使用注意力机制,让网络更关注于图像中的交通标志,避免受其他复杂信息的影响;加入特征融合模块(feature fusion module,FFM),过滤不同层上的无用信息,只保留对模型检测交通标志有用的信息;加入隐性知识,对检测层进行输出细化.实验结果表明,改进后的算法在CCTSDB交通标志检测数据集上召回率和平均精度达到94.7%、97.6%,相比原模型均有提升,在中远距离小目标检测下效果改善明显,同时检测速度为47.3 FPS,满足实时性要求.
智能交通、交通标志、注意力上下文、感受野扩增、特征融合、目标检测
59
TP391.41(计算技术、计算机技术)
江西省教育厅科技计划项目;江西省教育厅科技项目
2023-05-30(万方平台首次上网日期,不代表论文的发表时间)
共8页
262-269