期刊专题

10.3778/j.issn.1002-8331.2202-0287

改进YOLOv4的轻量级遥感图像建筑物检测模型

引用
针对现有建筑物检测模型检测精度低下,模型体积较大,导致遥感图像检测速度和精度无法平衡,不利于后期部署等问题,提出一种基于YOLOv4优化的轻量级遥感图像建筑物检测模型.利用轻量化网络GhostNet替换CSP DarkNet53进行特征提取;借鉴稠密连接思想,提出了Dense-PANet特征融合模块;将ECA注意力机制引入Ghost模块,替换特征融合颈部网络的传统卷积.实验结果表明,提出的模型与YOLOv4相比,牺牲少量检测速度,但是平均精度提高了0.96个百分点,召回率提升了1.08个百分点,模型体积降低了71.39%,浮点计算量降低了76.60%,能有效满足遥感图像建筑物检测的需求.

建筑物检测、YOLOv4、轻量级、特征融合、ECA注意力机制

59

TP391.4(计算技术、计算机技术)

国家自然科学基金62073231

2023-05-30(万方平台首次上网日期,不代表论文的发表时间)

共8页

213-220

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

59

2023,59(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn