期刊专题

10.3778/j.issn.1002-8331.2204-0264

改进YOLOv3-SPP水下目标检测研究

引用
针对水下目标检测任务中图像模糊、背景复杂以及目标小而导致误检和漏检问题,提出一种改进YOLOv3-SPP的水下目标检测算法.利用UWGAN网络对水下原始图像进行恢复,采用Mixup方法增强数据,减少错误标签记忆;以YOLOv3-SPP网络结构为基础,增加网络预测尺度,提高小目标检测性能;引入CIoU边框回归损失,提高定位精度;利用K-Means++聚类算法,筛选最佳Anchor box.将改进YOLOv3-SPP算法在处理后的URPC数据集上进行实验,平均检测精度由79.58%提升到88.71%,速度为28.9 FPS.结果表明,改进算法综合检测能力优于其他算法.

水下目标、图像增强、YOLOv3-SPP、UWGAN、CIoU、K-Means++

59

TP391(计算技术、计算机技术)

国家自然科学基金;江苏省研究生科研与实践创新计划项目

2023-03-30(万方平台首次上网日期,不代表论文的发表时间)

共10页

231-240

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

59

2023,59(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn