期刊专题

10.3778/j.issn.1002-8331.2206-0419

基于知识图谱的智能问答意图识别联合模型

引用
针对现有意图识别联合模型在专业领域知识图谱问答中容易发生识别领域实体以及问句分类错误的情况,提出一个结合了领域知识图谱的意图识别联合模型.该模型有三步,将领域知识图谱中实体对应的本体标签以及本体间关系导入训练数据集,形成包含本体标签的知识文本以及额外包含本体关系的知识文本图;通过字符级嵌入和位置信息嵌入将包含了本体标签的知识文本转化成嵌入表示并依据知识文本图创建实体关系可视矩阵,明确知识文本各成分的相关程度;将嵌入表示和实体关系可视矩阵输入模型编码层进行模型的训练.以高速列车领域知识图谱为例,经过准确率和召回率的验证,以该方法训练出的模型在高速列车领域问答数据集的意图识别任务上取得了更好的表现.

知识图谱智能问答、意图识别、联合模型

59

TP3(计算技术、计算机技术)

国家重点研发计划;四川省重大科技专项

2023-03-30(万方平台首次上网日期,不代表论文的发表时间)

共8页

171-178

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

59

2023,59(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn