期刊专题

10.3778/j.issn.1002-8331.2110-0124

基于生成对抗模型及光路分解的全局光照绘制

引用
针对现有全局光照图像重建高频特征效果模糊的问题,提出一种基于生成对抗模型及光路分解的全局光照绘制网络,以各类图形辅助属性(法线、深度、粗糙度等)为主要输入,学习光照传输的抽象表示并编码,用于推理光照图像.第一,将光照解耦为漫反射和镜面反射两部分,设计独立的生成对抗网络端到端地学习和推理光照子图,避免混频光照的相互干扰,保证高频细节的清晰重现.第二,使用自编码器作为绘制网络的基本结构,添加多尺度特征融合模块用于不同感受野下的特征合成,以促进阴影、镜面反射等复杂特效的有效表达.第三,使用旋转损失和特征损失两种增强的对抗损失函数,增加网络训练的稳定性.实验结果表明,与现有降噪或图像生成模型相比,该方法能够有效地生成视觉上更逼真的全局光照图像,保留更多高频细节,PSNR指标提升8%~20%.

全局光照绘制、光路分解、生成对抗网络、自编码器、多尺度融合

59

TP391(计算技术、计算机技术)

国家自然科学基金61873218

2023-02-27(万方平台首次上网日期,不代表论文的发表时间)

共9页

243-251

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

59

2023,59(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn