期刊专题

10.3778/j.issn.1002-8331.2109-0239

基于原始点云的三维目标检测算法

引用
针对当前三维目标检测中存在的数据降采样难、特征提取不充分、感受野有限、候选包围盒回归质量不高等问题,基于3DSSD三维目标检测算法,提出了一种基于原始点云、单阶段、无锚框的三维目标检测算法RPV-SSD(random point voxel single stage object detector),该算法由随机体素采样层、3D稀疏卷积层、特征聚合层、候选点生成层、区域建议网络层共五个部分组成,主要通过聚合随机体素采样的关键点逐点特征、体素稀疏卷积特征、鸟瞰图特征,进而实现对物体类别、3D包围盒以及物体朝向的预测.在KITTI数据集上的实验表明,该算法整体表现良好,不仅能够命中真值标签中的目标并且回归较好的包围盒,还能够从物体的不完整点云推测出物体的类别及其完整形状,提高目标检测性能.

深度学习、原始点云、目标检测、单阶段、无锚框

59

TP391(计算技术、计算机技术)

2023-02-20(万方平台首次上网日期,不代表论文的发表时间)

共9页

209-217

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

59

2023,59(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn